3 世纪后,中国各家历法都有一个特定的上元积年,但各个时期的天文学家尽管掌握了上元积年的推算方法,却没有明确提出系统的和完整的一次同余理论。
最早见于记载的一次同余问题是《孙子算经》中的“物不知数”问题:“今有物不知数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何。”这相当于求解一次同余组x≡2(mod 3)≡3(mod 5)≡2(mod 7)。
《孙子算经》给出最小正解:x=2×70+3×21+2×15-2×105=23,但未说明其理论根据。秦九韶青年时在杭州“访习于太史”,掌握了上元积年的推算方法。他经过深入研究,把上元积年算法与孙子问题的解法联系起来,在《数书九章》中明确给出了一次同余组的一般解法。
设m1,m2,.,mn 两两互素,M=m1·m2·.·mn,Mi=M/mi(i=1,2,3,.,n)。若有正整数k1,k2,.,kn 满足kiMi≡1(modmi),i=1,2,3,.,n,则一次同余组x≡ri(mod mi)≡r2(modm2)≡.的解为x modM ≡ ( )。k M r i i iin= .1这就是西方文献中所称的“中国剩余定理”。秦九韶把mi、M、Mi 和ki 分别称作定数、衍母、衍数和乘率。
显然,一次同余组解法的关键是求乘率ki。因为同余式kiMi≡1(modmi)等价于kigi≡1(modmi),其中Mi≡gi(modmi),0<gi<mi,所以这一问题又归结为求解同余式ax≡1(modb),(a,b)=1,a<b秦九韶提出的著名的“大衍求一术”,就是求解(1)的方法(今亦泛指整个一次同余组的解法)。《数书九章》卷三“治历演纪”题,详细记述了南宋开禧历上元积年的推算过程。从大衍求一术的这一具体应用可以清楚看出,秦九韶的算法是完全正确和相当严密的。并且,秦九韶的大衍求一术与他的高次方程数值解法一样,简洁、明确、带有很强的机械性,其程序亦可毫无困难地转化为算法语言,用计算机来实现。
另外还值得一提的是,《数书九章》卷一、卷二大衍类共有9 个一次同余组问题,其中只有“余米推数”题(三个模数为19、17、12)可直接应用“中国剩余定理”来解,其余诸题所给模数或带有小数,或带有分数,或为不两两互素的整数,需要进行适当的变换。带有小数和分数的模易于化为整数模。但由于中国古代传统数学中没有素数概念,因而秦九韶不可能用素因数分解的方法来化不两两互素的模为两两互素的模。可是他所设计的一些算法,如“两两连环求等,约奇弗约偶(或约得五,而彼有十,乃约偶弗约奇)”等,不仅较为成功地解决了这一难题,而且在实际计算上比素因数分解法更具优越性。因此,有些学者誉称其为没有素数的素数论。
在西方,最早接触一次同余组的是意大利数学家斐波那契(Fibonacci,约1170—1250),他在《算盘书》(1202)中给出了两个一次同余问题,但没有一般解法。直到18—19 世纪,瑞士数学家欧拉(Euler,1707—1783)和德国数学家高斯(C.F.Gauss,1777—1855)才对一次同余组进行深入研究,重新获得与“中国剩余定理”相同的定理,并对模数两两互素的情形给出严格证明。1852 年,英国传教士、汉学家伟烈亚力(A.Wylie,1815—1887)发表《中国数学科学札记》,其中介绍了大衍求一术。从1856 年到1876 年,德国人马蒂生(Martthiessen,1830—1906)等西方学者又多次指出大衍求一术原理与高斯方法的一致性,从而更加引起了欧洲学者的瞩目。德国数学史家康托(M.Cantor,1829—1920)高度评价了大衍求一术,他称赞发现这一算法的中国数学家是“ 最幸运的天才” 。比利时东方学家李倍始(U.Libbrecht)在《13 世纪的中国数学》(Chinese Mathematics intheThirteenth Century,1973)一书中对从《孙子算经》到19 世纪末斯提尔吉斯共15 个有代表性的解决同余组的人或著作作了比较。他按工作质量所排列的名次是:斯提尔吉斯(1890),欧拉(1743),高斯(1801),秦九韶(1247),贝维立基(1669),哥廷根手稿(约1550),休顿(1657),慕尼黑手稿(约1450),斐波那契(1202),杨辉(1275),《孙子算经》(约400),阿古洛斯(约1350),程大位(1592),严恭(1372),玉山若干(约1460)。秦九韶名列第四。
《数书九章》除了正负开方术和大衍求一术这两项重要成就外,还有不少其他方面的成就。如在代数学方面,改进了线性方程组的解法,普遍应用互乘相消法代替传统的直除法;在几何学方面,提出已知三角形三边之长求其面积的等价于海伦公式的“三斜求积术”:A =1 4a ba b c 2 22 2 22-+ - .è ... ÷é. êêù. úú,将《九章算术》与《海岛算经》中的勾股测望之术发扬光大,等等。《数书九章》的内容非常丰富,从中我们不仅可以找到数学和天文历法乃至雨雪量等方面的珍贵资料,而且还可以了解到南宋时期户口增长、耕地扩展、赋税、利贷、度量衡以及货币流通、海外贸易等社会经济领域的真实情况。
2024-07-10
2024-06-20
2023-06-02
2023-04-03
2023-04-03
2023-03-26
山西省首届“韶华杯 祖国有我”获奖作品展示——少年绘画二等奖 潘江涛
2023-02-13
山西省首届“韶华杯 祖国有我”获奖作品展示——幼儿绘画三等奖 李贤
2023-01-31
山西省首届“韶华杯 祖国有我”获奖作品展示——幼儿绘画二等奖 王洛伊
2023-01-28
山西省首届“韶华杯 祖国有我”获奖作品展示——幼儿绘画二等奖 刘一铭
2023-01-28
山西省首届“韶华杯 祖国有我”获奖作品展示——少年绘画一等奖 张家源
2023-01-27
山西省首届“韶华杯 祖国有我”获奖作品展示——幼儿绘画二等奖 李昊然
2023-01-27
山西省首届“韶华杯 祖国有我”获奖作品展示——幼儿绘画三等奖 白航恺
2023-01-26
山西省首届“韶华杯 祖国有我”获奖作品展示——幼儿绘画一等奖 柳诗语
2023-01-26
联系我们
胡永华 邮箱:444565820@qq.com 电话:13097592190
李日宏 邮箱:1191878849@qq.com 电话:13096549520